COMMENTS ON "FOUNDATIONS OF P-ADIC TEICHMÜLLER THEORY"

Shinichi Mochizuki

March 2022

(1.) In §0.6, §0.9 of the Introduction, the *captions* and *actual illustrations* of Fig. 3, 4 [i.e., the *complex* and *p*-adic cases] are *reversed*. The illustration in the *p*-adic case appears with the correct caption in Fig. 3 of §1.6 of [3].

(2.) In line 4 of Theorem 1.3, (3), of $\S1.2$ of the Introduction, "odd" should read "even". This result is stated correctly in the body of the text — e.g., Chapter IV, Theorem 3.2; Chapter V, $\S1$.

(3.) In the statement of the criterion (*) in the discussion following Chapter I, Definition 2.8, the word *"horizontal"* in the second and third lines following the display should be replaced by *"vertical"*.

(4.) In Chapter II, §2.3, the "versal families" should be understood as being possibly empty. In particular, in item (1) of the statements of Chapter II, Theorem 2.8, Corollary 2.9, the phrase "smooth of dimension ..." should be replaced by "smooth of dimension ... (if it is not empty)" (cf. the phrasing of the final paragraph of the statement of Chapter II, Theorem 2.8).

(5.) In the second sentence of the third paragraph of §2.3.1 of the Introduction, the phrase "the hypercohomology of this complex" should read "the first hypercohomology module of this complex".

(6.) With regard to the notation " $\mathcal{N}^{\log} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ ", " $\mathcal{C}^{\log} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ " in the paragraph immediately preceding Theorem 0.4 of §0.9 of the Introduction, we note the following: Let K be a finite extension of \mathbb{Q}_p and \mathfrak{Y} a formally smooth p-adic formal scheme over the ring of integers \mathcal{O}_K of K, i.e., such as a suitable étale localization of \mathcal{N} or \mathcal{C} . Then $\mathfrak{Y} \times_{\mathbb{Z}_p} \mathbb{Q}_p$ (i.e., " $\mathfrak{Y} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ ") is defined as the *ringed space* obtained by tensoring the structure sheaf of \mathfrak{Y} over \mathcal{O}_K with K. Thus, if, for instance, \mathfrak{Y} is the formal scheme obtained as the formal inverse limit of an inverse system of schemes

$$\ldots \hookrightarrow \mathfrak{Y}_n \hookrightarrow \mathfrak{Y}_{n+1} \hookrightarrow \ldots$$

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}T_{\mathrm{E}}X$

— where *n* ranges over the positive integers, and each " \hookrightarrow " is a nilpotent thickening — and *U* is an affine open of the *common* underlying topological space of the \mathfrak{Y}_n , then the rings of sections of the respective structure sheaves $\mathcal{O}_{\mathfrak{Y}}$, \mathcal{O}_Y of \mathfrak{Y} , *Y* over *U* are, by definition, given as follows:

$$\mathcal{O}_{\mathfrak{Y}}(U) \stackrel{\text{def}}{=} \varprojlim_{n} \mathcal{O}_{\mathfrak{Y}_{n}}(U); \quad \mathcal{O}_{Y}(U) \stackrel{\text{def}}{=} \mathcal{O}_{\mathfrak{Y}}(U) \otimes_{\mathcal{O}_{K}} K.$$

Here, we observe that $\mathcal{O}_{\mathfrak{Y}}(U)$ is the *p*-adic completion of a normal noetherian ring of finite type over \mathcal{O}_K . In particular, we observe that one may consider finite étale coverings of Y, i.e., by considering systems of finite étale algebras \mathcal{A}_U over the various $\mathcal{O}_Y(U)$ [that is to say, as U is allowed to vary over the affine opens of the \mathfrak{Y}_n] equipped with gluings over the intersections of the various U that appear. Note, moreover, that by considering the normalizations of the $\mathcal{O}_{\mathfrak{Y}}(U)$ in \mathcal{A}_U , we conclude [cf. the discussion of the Remark immediately following Theorem 2.6 in Section II of [1]] that

(NorFor) any such system $\{\mathcal{A}_U\}_U$ may be obtained as the $W \stackrel{\text{def}}{=} \mathfrak{W} \times_{\mathcal{O}_K} K$ for some formal scheme \mathfrak{W} that is finite over \mathcal{Y} , and that arises as the formal inverse limit of an inverse system of schemes

$$\ldots \hookrightarrow \mathfrak{W}_n \hookrightarrow \mathfrak{W}_{n+1} \hookrightarrow \ldots$$

— where n ranges over the positive integers; each " \hookrightarrow " is a nilpotent thickening; for each affine open V of the common underlying topological space of the \mathfrak{W}_n , $\mathcal{O}_{\mathfrak{W}}(V)$ is the p-adic completion of a normal noetherian ring of finite type over \mathcal{O}_K .

Indeed, this follows from well-known considerations in commutative algebra, which we review as follows. Let R be a normal noetherian ring of finite type over a complete discrete valuation ring A [i.e., such as \mathcal{O}_K in the above discussion] with maximal ideal \mathfrak{m}_A and quotient field F such that R is separated in the \mathfrak{m}_A -adic topology. Thus, since A is excellent [cf. [2], Scholie 7.8.3, (iii)], it follows [cf. [2], Scholie 7.8.3, (ii)] that R is excellent, hence that the \mathfrak{m}_A -adic completion R of R is also normal [cf. [2], Scholie 7.8.3, (v)]. Then it is well-known and easily verified [by applying a well-known argument involving the trace map that the normalization of \widehat{R} in any finite étale algebra over $\widehat{R} \otimes_A F$ is a finite algebra over \widehat{R} . Let \widehat{S} be such a *finite algebra* over \widehat{R} . Then it follows immediately from a suitable version of "Hensel's Lemma" [cf., e.g., the argument of [4], Lemma 2.1] that \widehat{S} may be obtained, as the notation suggests, as the \mathfrak{m}_A -adic completion of a finite algebra S over R, which may in fact be assumed to be *separated* in the \mathfrak{m}_A -adic topology and [by replacing S by its normalization and applying [2], Scholie 7.8.3, (v), (vi)] *normal.* Let $f \in R$ be an element that maps to a *non-nilpotent* element of $R/\mathfrak{m}_A \cdot R$. Write $R_f \stackrel{\text{def}}{=} R[f^{-1}]; S_f \stackrel{\text{def}}{=} S \otimes_R R_f; \widehat{R}_f, \widehat{S}_f$ for the respective \mathfrak{m}_A -adic completions of R_f , S_f . Then it follows again from [2], Scholie 7.8.3, (v), that \hat{S}_f , which may be naturally identified [since S is a *finite algebra* over R] with $\widehat{S} \otimes_{\widehat{R}} \widehat{R}_f$, is normal. That is to say, it follows immediately that

(NorForZar) the operation of forming *normalizations* [i.e., as in the above discussion] is *compatible* with *Zariski localization* on the *given formal scheme*.

On the other hand, one verifies immediately that (NorFor) follows formally from (NorForZar).

Bibliography

- G. Faltings, Crystalline Cohomology and p-adic Galois Representations, Proceedings of the First JAMI Conference, Johns Hopkins Univ. Press (1990), pp. 25-79.
- [2] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas, Séconde partie, Publ. Math. IHES 24 (1965).
- [3] S. Mochizuki, An Introduction to *p*-adic Teichmüller Theory, Cohomologies *p*-adiques et applications arithmétiques I, Astérisque **278** (2002), pp. 1-49.
- [4] S. Mochizuki, Topics in Absolute Anabelian Geometry II: Decomposition Groups and Endomorphisms, J. Math. Sci. Univ. Tokyo 20 (2013), pp. 171-269.